Title Slide

• Title:

Challenges and Prospects for the Social Implementation of Medical AI:

Subtitle:

Orthopaedic Applications Using an AI-Assisted Diagnostic System for Osteoporosis as a Case Study

Speaker Name:

Dr. Toru Moro, Project Professor of Division of Science for Joint Reconstruction, The University of Tokyo

Eight Steps Toward Real-World Implementation

Developing medical AI is not enough —implementation requires a structured process:

- 1. Idea formulation based on clinical needs
- 2. Ethics approval and lawful data acquisition
- 3. Model development and validation with clear metrics
- 4. Patent filing and IP protection
- 5. Academic presentation with regulatory risk awareness
- 6. Industry collaboration and technology transfer (NDA, contracts)
- 7. Regulatory approval (PMDA classification and review)
- 8. Reimbursement and integration into clinical workflows

Essential Literacy in Ethics and Legal Compliance

Multiple legal layers govern medical AI:

- Personal Information Protection Law (2022 revision):
 Understand the difference between pseudonymized and anonymized data
- Next-Generation Medical Infrastructure Law:
 Data must be handled via certified providers
- Medical vs. Research Ethics:
 Define target, purpose, and principles clearly
- → Consent forms, data use scope, and secure handling must be carefully managed.

Patent and Regulatory Pitfalls

- Most diagnostic AI falls under SaMD (Software as a Medical Device)
- Risk of losing patent novelty through premature disclosure
- Infringement risk must be assessed via prior art searches (e.g., J-PlatPat)
- Early dialogue with PMDA and classification assessment is critical for approval strategy

Key Takeaways and Closing Message

We live in an era where "anyone can build AI"

-but responsibility matters.

Keys to real-world adoption:

- 1. Prioritize patient safety in technical design
- 2. Integrate ethics, law, and IP strategy from the outset
- 3. Anticipate medical device regulations early in development

Message:

AI innovation must go hand in hand with regulatory readiness and clinical relevance.

Case Example

AI-Based Osteoporosis Diagnosis Support (AIBONEX®)

- Osteoporosis affects 15+ million people in Japan,
 but DXA testing is underused due to cost and limited access.
- We developed AIBONEX, an AI system that estimates BMD from chest or lumbar spine X-rays.
- Based on Vision Transformer, it estimates lumbar and femoral neck BMD (YAM%, T-score, etc.) with high accuracy.
- Performance:
 - Lumbar X-rays: r = 0.83-0.91, AUC = 0.90-0.95
 - Chest X-rays: r = 0.82-0.83, AUC = 0.89-0.91
- Preparing for regulatory approval and insurance coverage.